skip to main content


Search for: All records

Creators/Authors contains: "Shapiro, Jeffrey H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimensional quantum information processing in its spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is verified through Franson-interference recurrences and temporal correlation with low-jitter detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quantified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and entanglement distribution show the singly-filtered quantum frequency comb’s capability for high-efficiency quantum information processing and high-capacity quantum networks.

     
    more » « less
  3. Free, publicly-accessible full text available June 15, 2024
  4. Abstract Deterministic frequency manipulation of single photons is an essential tool for quantum communications and quantum networks. We demonstrate a 15.65 GHz frequency shift for classical and nonclassical light using a commercially available quadrature phase-shift keying modulator. The measured spectrum of frequency-shifted single photons indicates a high carrier-to-sideband ratio of 30 dB. We illustrate our frequency shifter’s utility in quantum photonics by performing Hong–Ou–Mandel quantum interference between two photons whose initial frequency spectra overlap only partially, and showing visibility improvement from 62.7 to 89.1% after one of the photons undergoes a corrective frequency shift. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Qudit entanglement is an indispensable resource for quantum information processing since increasing dimensionality provides a pathway to higher capacity and increased noise resilience in quantum communications, and cluster-state quantum computations. In continuous-variable time–frequency entanglement, encoding multiple qubits per photon is only limited by the frequency correlation bandwidth and detection timing jitter. Here, we focus on the discrete-variable time–frequency entanglement in a biphoton frequency comb (BFC), generating by filtering the signal and idler outputs with a fiber Fabry–Pérot cavity with 45.32 GHz free-spectral range (FSR) and 1.56 GHz full-width-at-half-maximum (FWHM) from a continuous-wave (cw)-pumped type-II spontaneous parametric downconverter (SPDC). We generate a BFC whose time-binned/frequency-binned Hilbert space dimensionality is at least 324, based on the assumption of a pure state. Such BFC’s dimensionality doubles up to 648, after combining with its post-selected polarization entanglement, indicating a potential 6.28 bits/photon classical-information capacity. The BFC exhibits recurring Hong–Ou–Mandel (HOM) dips over 61 time bins with a maximum visibility of 98.4% without correction for accidental coincidences. In a post-selected measurement, it violates the Clauser–Horne–Shimony–Holt (CHSH) inequality for polarization entanglement by up to 18.5 standard deviations with anS-parameter of up to 2.771. It has Franson interference recurrences in 16 time bins with a maximum visibility of 96.1% without correction for accidental coincidences. From the zeroth- to the third-order Franson interference, we infer an entanglement of formation (Eof) up to 1.89 ± 0.03 ebits—where 2 ebits is the maximal entanglement for a 4 × 4 dimensional biphoton—as a lower bound on the 61 time-bin BFC’s high-dimensional entanglement. To further characterize time-binned/frequency-binned BFCs we obtain Schmidt mode decompositions of BFCs generated using cavities with 45.32, 15.15, and 5.03 GHz FSRs. These decompositions confirm the time–frequency scaling from Fourier-transform duality. Moreover, we present the theory of conjugate Franson interferometry—because it is characterized by the state’s joint-temporal intensity (JTI)—which can further help to distinguish between pure-state BFC and mixed state entangled frequency pairs, although the experimental implementation is challenging and not yet available. In summary, our BFC serves as a platform for high-dimensional quantum information processing and high-dimensional quantum key distribution (QKD).

     
    more » « less
  7. Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses. 
    more » « less